Estimating endogenous changes in task performance from EEG

نویسندگان

  • Jon Touryan
  • Gregory Apker
  • Brent J. Lance
  • Scott E. Kerick
  • Anthony J. Ries
  • Kaleb McDowell
چکیده

Brain wave activity is known to correlate with decrements in behavioral performance as individuals enter states of fatigue, boredom, or low alertness.Many BCI technologies are adversely affected by these changes in user state, limiting their application and constraining their use to relatively short temporal epochs where behavioral performance is likely to be stable. Incorporating a passive BCI that detects when the user is performing poorly at a primary task, and adapts accordingly may prove to increase overall user performance. Here, we explore the potential for extending an established method to generate continuous estimates of behavioral performance from ongoing neural activity; evaluating the extended method by applying it to the original task domain, simulated driving; and generalizing the method by applying it to a BCI-relevant perceptual discrimination task. Specifically, we used EEG log power spectra and sequential forward floating selection (SFFS) to estimate endogenous changes in behavior in both a simulated driving task and a perceptual discrimination task. For the driving task the average correlation coefficient between the actual and estimated lane deviation was 0.37 ± 0.22 (μ ± σ). For the perceptual discrimination task we generated estimates of accuracy, reaction time, and button press duration for each participant. The correlation coefficients between the actual and estimated behavior were similar for these three metrics (accuracy = 0.25 ± 0.37, reaction time = 0.33 ± 0.23, button press duration = 0.36 ± 0.30). These findings illustrate the potential for modeling time-on-task decrements in performance from concurrent measures of neural activity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mental Arithmetic Task Recognition Using Effective Connectivity and Hierarchical Feature Selection From EEG Signals

Introduction: Mental arithmetic analysis based on Electroencephalogram (EEG) signal for monitoring the state of the user’s brain functioning can be helpful for understanding some psychological disorders such as attention deficit hyperactivity disorder, autism spectrum disorder, or dyscalculia where the difficulty in learning or understanding the arithmetic exists. Most mental arithmetic recogni...

متن کامل

EEG-informed fMRI analysis during a hand grip task: estimating the relationship between EEG rhythms and the BOLD signal

In the last decade, an increasing interest has arisen in investigating the relationship between the electrophysiological and hemodynamic measurements of brain activity, such as EEG and (BOLD) fMRI. In particular, changes in BOLD have been shown to be associated with changes in the spectral profile of neural activity, rather than with absolute power. Concurrently, recent findings showed that dif...

متن کامل

AL . : ESTIMATING ALERTNESS FORM THE EEG POWER SPECTRUM 1 Estimating Alertness from the EEG

In tasks requiring sustained attention, human alertness varies on a minute time scale. This can have serious consequences in occupations ranging from air traac control to monitoring of nuclear power plants. Changes in the electroencephalographic (EEG) power spectrum accompany these uctuations in the level of alertness, as assessed by measuring simultaneous changes in EEG and performance on an a...

متن کامل

Sustained Attention in Real Classroom Settings: An EEG Study

Sustained attention is a process that enables the maintenance of response persistence and continuous effort over extended periods of time. Performing attention-related tasks in real life involves the need to ignore a variety of distractions and inhibit attention shifts to irrelevant activities. This study investigates electroencephalography (EEG) spectral changes during a sustained attention ta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2014